V4|2 Status Update

Hans Verkuil
Cisco Systems Norway

© 2014 Cisco and/or its affiliates. All rights reserved !

Colorspaces

© 2014 Cisco and/or its affiliates. All rights reserved Cisco Confidential

Colorspaces Updates

 Deprecate V4L2 YCBCR_ENC_SYCC: really just the same as
V4L2 YCBCR _ENC 601 after careful study of the standards.

* Add support to colorspace conversion hardware. Needs support to tell a
capture device what colorspace the application expects.

 New v4I2 pix_format(_mplane) flag for that:
V4L2 PIX FMT _FLAG HAS_ CSC. If set, then the driver will use the
S FMT colorspace, ycbcr_enc and quantization fields to try and convert
what it receives to what the application expects.

* Needs core support to set up any CSC matrices/vectors.

« Wrote code to do the calculations to go from any format to any format as
long as both use the same V4L2 COLORSPACE value.

Colorspaces Updates

Complex to decide what to send out on an HDMI transmitter, and what is
received on an HDMI receiver.

Creating helper functions that can make that decision. Too complex to
expect drivers to figure that out themselves.

Still work in progress, | need a fully functioning HDMI-to-HDMI loop
before | can clean everything up and prepare patches.

Initial implementation will be for adv7604 and adv7511 (V4L2 driver) with
adv7842 to follow soon afterwards.

CSC calculations should probably become part of lib since this can be
shared with DRM.

Duplicate subdev ops

© 2014 Cisco and/or its affiliates. All rights reserved

Cisco Confidential

[$]

Duplicate subdev ops

* Several v412 subdev ops are duplicated as both video and pad ops.
Bad, bad idea. Bridge drivers won't know which one to use, so this
prevent reusability.

* Problem: pad ops could not be used in bridge drivers since some expect
a struct v412_fh, which is not available in a bridge driver. The v412_fh
struct is used to store the "TRY' configuration.

* Solved by replacing v4l2_fh by struct v412_subdev_pad_config which
contains the TRY configuration.

* Clarify that setting the ACTIVE configuration does not use struct
v4l2_subdev_pad_ config, so drivers can leave that to NULL.

* The enum_framesizes/intervals only supported the TRY configuration,
extend that by also supporting the ACTIVE configuration. This is what
bridge drivers need and want.

* The duplicate enum_framesizes/intervals video ops have been removed.
D B [B U & I |

Duplicate subdev ops

Still to do: remove duplicate video cropping ops.

Patch is available, but | have problems getting my renesas soc-camera
based board to work in order to test.

Remove duplicate video enum/g/try/s_mbus_fmt ops. Initial conversion
done, but needs cleanup and double checking. Missing here is support
to get TRY format since g_mbus_fmt only supports getting the ACTIVE
format. | might address that in a separate patch.

This work will also go part of the way to make soc-camera more generic.
The goal it to let soc-camera work with any sensor instead of requiring
explicit soc-camera sensor support.

Lesson learned: never, ever allow for duplicate ops again.

Compliance Testing & vivid
Improvements

v4l2-compliance Improvements

« New man page!
e The driver state is restored after doing the tests.

e (Can test streaming for all formats/sizes/intervals and the main
crop/compose combinations.

e (Can do automated tests to check for correct color format implementation
using red, green and blue inputs and streaming with every supported
format.

 To do: support this for output as well by sending red, green or blue output
for every supported non-compressed format.

« Todo: ifthe V4L2 PIX FMT_FLAG_HAS CSC flag is implemented, then
test this for various colorspace combinations as well.

« To do: test correct implementation of the selection flags.

 Todo (?): add tests for the only two untested ioctls: VIDIOC_S FBUF and
VIDIOC_OVERLAY.
D . L D O I |

vivid Improvements

e Added YUV 4:2:0 format support.

« Many new formats are now supported by the test pattern generator.
« Upcoming: support for CVT/GTF formats.

e Todo: further improve colorspace handling.

e To do: double check 4:2:0 subsampling used by the TPG.

Request API

© 2014 Cisco and/or its affiliates. All rights reserved

Cisco Confidential

Request AP

Prepare for Android CameraHAL v3.

Per-buffer configuration.

Also combining multiple buffers + their configuration in one request.

Internally implemented as an extension of the control framework.

Request API: Public APl Changes

« struct v412_buffer getsanew 132 request field.

e struct v412_ext_controls and struct v4l2_query ext ctrl both get a new
~ u32 request field.

* This associates buffers with their configuration.

 The request IDs can be any number > 0, but drivers will limit the total
number of requests to prevent insanity. A u32 max regs fieldis

added to struct v4l2_query_ext_ctrl to let the user know what the
maximum is for that control. It is O if this control does not support
requests.

* Internally request controls are stored in a hash table of
VIDEO MAX FRAME buckets, each bucket a linked list of control values.

The hash function is just request % VIDEO MAX FRAME.

Request API: Public APl Changes

« Add anew ioctl: VIDIOC REQUEST CMD.

e struct v41l2 request cmd {

_u32 cmd;

~_ul6b request;

__ulo flags;

union {
struct {

~u32 datal8];

} raw;

I

I

. Request commands: V4L2_REQ_CMD_BEGIN/END/DELETE/APPLY.
« Flag for CMD_BEGIN: V4L2 REQ_CMD_BEGIN_FL_KEEP.

« BEGIN stores the request in struct v4l2_fh, END removes it again.

Request API: Public APl Changes

e Missing: queuing all requests (buffers + configuration).

« Buffers for a request can be prequeued by calling
VIDIOC PREPARE_BUF.

« But queuing them all for a request requires top-level synchronization.

* |dea: add V4L2 REQ_CMD_ QUEUE_ALL. Will call a top-level struct
v412_device queue_all() callback and after that it is up to the driver to do
the work.

e Postpone this until a driver really needs this.

Request API: To Do

Need agreement on the API.

Need a bit more thought regarding the KEEP flag.

Needs more testing.

Add documentation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

