
1© 2014 Cisco and/or its affiliates. All rights reserved.

Configuration Stores
Hans Verkuil
Cisco Systems Norway

© 2014 Cisco and/or its affiliates. All rights reserved. 2

Problem Description
● Android libcamera 3 requires per-frame configurations. So each frame

has associated a list of settings that are applied when the frame is
captured. In addition it can return per-frame information (histogram,
exposure settings, etc.).

● Besides controls the following ioctls can also function as per-frame
configuration: S_SELECTION(CROP/COMPOSE), S_INPUT,
S_OUTPUT, S_AUDIO, S_AUDOUT, S_PARM (fps), SUBDEV_S_FMT,
SUBDEV_S_SELECTION, SUBDEV_S_FRAME_INTERVAL.

● How to solve this without putting undue burden on drivers and
applications?

© 2014 Cisco and/or its affiliates. All rights reserved. 3

Proposal: use the control framework
● Atomicity is built-in to the control framework. So are all the validation and

consistency checks and control events.

● With the new compound type and array support in the control framework
it is easy to store structs/arrays as controls.

● You need 'configuration stores' that store all the control values needed
for the per-frame configuration. Each store has an ID. ID 0 refers to the
current (active) control value, other IDs refer to a specific configuration
store.

● When calling QBUF you pass a configuration store ID and the driver will
apply the contents of that store when the buffer is made ready for DMA.

● Some experimentation shows two use-cases: update a control every
time a configuration store is applied, or update it only if someone set it
(fire and forget).

© 2014 Cisco and/or its affiliates. All rights reserved. 4

Applying a Configuration Store
● Userspace decides how many config stores are needed, but the driver

does set a maximum (probably some multiple of the maximum number
of buffers).

● Note that typically only a subset of the controls will have configuration
stores. E.g. it makes no sense to have
V4L2_CID_POWER_LINE_FREQUENCY in configuration stores.

© 2014 Cisco and/or its affiliates. All rights reserved. 5

API Changes
● Add a new flag: V4L2_CTRL_FLAG_HAS_CONFIG_STORE to tell the

application that this control supports configuration stores.

● In struct v4l2_buffer the 'reserved2' field is renamed to 'config_store'.

© 2014 Cisco and/or its affiliates. All rights reserved. 6

API Changes
● Add a new ioctl: VIDIOC_CONFIG_STORE with argument:

struct v4l2_config_store {
 __u32 id;
 __u32 action;
 __u32 flags;
 __u32 reserved[13];
};

where id is the configuration store ID and action is one of:

V4L2_CONF_STORE_OPEN
V4L2_CONF_STORE_CLOSE
V4L2_CONF_STORE_APPLY

and flags is either 0 or V4L2_CONF_STORE_FL_FORGET to signify
fire-and-forget.

© 2014 Cisco and/or its affiliates. All rights reserved. 7

API Changes
● After V4L2_CONF_STORE_OPEN the configuration store ID is stored in

struct v4l2_fh. Any ioctl that supports configuration stores (initially only
the control ioctls) will be applied to this config store until
V4L2_CONF_STORE_CLOSE.

● In the future non-control ioctls will be redirected to a control by the core
framework if STORE_OPEN is active.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

